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Abstract

This report follows the series of previous documents ([PT08, BPRT09b, PT09, BPT09, PT10,
PB13], where we presented the parallel descriptive, correlative, multi-correlative, principal
component analysis, contingency, k-means, order and auto-correlative statistics engines which
we developed within the Visualization Tool Kit (VTK) as a scalable, parallel and versatile
statistics package. We now report on a new engine which we developed for the calculation of
divergence statistics, a concept which we hereafter explain and whose main goal is to quantify
the discrepancy, in a stasticial manner akin to measuring a distance, between an observed
empirical distribution and a theoretical, “ideal” one. The ease of use of the new diverence
statistics engine is illustrated by the means of C++ code snippets. Although this new engine
does not yet have a parallel implementation, it has already been applied to HPC performance
analysis, of which we provide an example.
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1 Introduction

This report is a sequel to [PT08, BPRT09b, PT09, BPT09, PT10, PB13], which respectively fo-
cused on the parallel descriptive, correlative, multi-correlative, principal component analysis, con-
tingency, k-means, order, and auto-correlative engines which we designed and implemented as
VTK parallel filters; please refer to these references for a detailed presentation of these engines as
well as an assessment of their scalability and speed-up properties.

1.1 Initial Motivation: The Titan Informatics Toolkit

The addition of a parallel, scalable statistics module to VTK was motivated by the Titan Informatics
Toolkit [WBS08], a collaborative effort between Sandia National Laboratories and Kitware. This
effort significantly expanded the Visualization ToolKit (VTK) to support the ingestion, processing,
and display of informatics data. By leveraging the VTK data and execution models, Titan provides a
flexible, component based, pipeline architecture for the integration and deployment of algorithms
in the fields of intelligence, semantic graph and information analysis. A theoretical application

Figure 1. A theoretical application built with Titan.

built from Titan/VTK components is schematized in Figure 1. The flexibility of the pipeline ar-
chitecture of VTK allows for effective utilization of the Titan components for different problem
domains. For instance, an early implementation was OVIS, a generalization of the ParaView sci-
entific visualization application dedicated to information visualization, leveraging the ParaView
client-server architecture to perform scalable analysis on distributed memory platforms.

In 2008, the parallel statistical engines were integrated into VTK, and the module has continued
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to grow as new engines have been developed in the context of the “Network Grand Challenge”
LDRD project at Sandia, and under a 3-year grant from the DOE/ASCR program to conduct broad
research in the topological and statistical analysis of petascale data. Now, the main thrust for
the current work is for the sake of large-scale high perfomance architecture simulation, where it
desired to quantify how a number of variables of interest behave under various simulation inputs,
as compared to a model “ideal” behavior.

This report thus presents the statistical engine which we developed in this context, using statis-
tical divergences and distances.

1.2 Statistics Functionality in VTK

A number of univariate, bivariate, and multivariate statistical tools have been implemented in VTK.
Each tool acts upon data stored in one or more tables; the first table serves as observations and
further tables serve as model data. Each row of the first table is an observation, while the form of
further tables depends on the type of statistical analysis. Each column of the first table is a variable.

Operations

In order to meet the two overlapping but not exactly congruent design requirements of matching
typical data analysis workflows and being conducive to scalable parallel implementation, our de-
sign partitions the statistical analysis algorithms into 4 disjoint operations: learn a model from
observations; derive statistics from a model; assess observations with a model, and test a hypothe-
sis. These operations, when all are executed, occur in order as shown in Figure 2. However, it is

Figure 2. The 4 operations of statistical analysis and their inter-
actions with input observations and models. When an operation is
not requested, it is eliminated by connecting input to output ports.

also possible to execute only a subset of these, for example when it is desired that previously com-
puted models, or models constructed with expert knowledge, be used in conjunction with existing
data. Note that in earlier publications (e.g., [BPRT09a, PTB10, Inc10]) only the first 3 operations
were mentioned; the Test operation, which we initially saw as a part of Derive, was separated out
for reasons we explained in [PTBM11]. These operations, performed on a request comprising a
set of columns of the input observations table, are further explained as follows:
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Learn: Calculate a “raw” statistical model from an input data set. By “raw”, we mean the minimal
representation of the desired model, that contains only primary statistics. For example, in
the case of descriptive statistics: sample size, minimum, maximum, mean, and centered M2,
M3 and M4 aggregates (cf. [P0́8]). For Table 1 with a request R1 = {B}, these values are 6,
1, 11, 4.83̄, 68.83̄, 159.4̄, and 1759.8194̄, respectively.

Derive: Calculate a “full” statistical model from a raw model. By “full”, we mean the complete
representation of the desired model, that contains both primary and derived statistics. For
example, in the case of descriptive statistics, the following derived statistics are calculated
from the raw model: unbiased variance estimator, standard deviation, and two estimators (g
and G) for both skewness and kurtosis. For Table 1 with a request R1 = {B}, these additional
values are 13.76̄, 3.7103, 0.520253, 0.936456, −1.4524, and −1.73616 respectively.

Assess: Given a statistical model – from the same or another data set – mark each datum of a
given data set. For example, in the case of descriptive statistics, each datum is marked with
its relative deviation with respect to the model mean and standard deviation (this amounts
to the one-dimensional Mahalanobis distance). Table 1 shows this distance for R1 = {B} in
column E.

Variables

A univariate statistics algorithm only uses information from a single column and, similarly, a
bivariate from 2 columns. Because an input table may have many more columns than an algorithm
can make use of, the API must provide a way for users to denote columns of interest. Because it
may be more efficient to perform multiple analyses of the same type on different sets of columns
at once as opposed to one after another, the VTK statistical engines provide a way for users to make
multiple analysis requests of a single filter.

Table 1. A table of observations that might serve as input to a
statistics algorithm.

row A B C D E
1 0 1 0 1 1.03315
2 1 2 2 2 0.76363
3 0 3 4 6 0.49411
4 1 5 6 24 0.04492
5 0 7 8 120 0.58395
6 1 11 10 720 1.66202

As an example, consider Table 1. It has 6 observations of 5 variables. If univariate statistics of
A, B, and C are desired then three univariate requests must be made, one for each column. On the
other hand, if a multi-variate statistical analysis, such as PCA, is desired {A,B,C} then a single
request is sufficient.
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Algorithms

At the time of writing, the following algorithms are available in VTK proper or as extensions to it
(as is the case for the divergence statistics engine discussed in this report):

1. Univariate statistics:

(a) Descriptive statistics:

Learn: calculate minimum, maximum, mean, and centered M2, M3 and M4 aggre-
gates;

Derive: calculate unbiased variance estimator, standard deviation, skewness (12 and
G1 estimators), kurtosis (g2 and G2 estimators);

Assess: mark with relative deviations (one-dimensional Mahalanobis distance).

(b) Order statistics:

Learn: calculate histogram;
Derive: calculate arbitrary quantiles, such as “5-point” statistics (quantiles) for box

plots, deciles, percentiles, etc.;
Assess: mark with quantile index.

2. Bivariate statistics:

(a) Correlative statistics:

Learn: calculate minima, maxima, means, and centered M2 aggregates;
Derive: calculate unbiased variance and covariance estimators, Pearson correlation co-

efficient, and linear regressions (both ways);
Assess: mark with squared two-dimensional Mahalanobis distance.

(b) Contingency statistics:

Learn: calculate contingency table;
Derive: calculate joint, conditional, and marginal probabilities, as well as information

entropies;
Assess: mark with joint and conditional PDF values, as well as pointwise mutual in-

formations.

3. Multivariate statistics: These filters all accept requests containing ni variables upon which
simultaneous statistics should be computed.

(a) Multi-Correlative statistics:

Learn: calculate means and pairwise centered M2 aggregates;
Derive: calculate the upper triangular portion of the symmetric ni×ni covariance ma-

trix and its (lower) Cholesky decomposition;
Assess: mark with squared multi-dimensional Mahalanobis distance.
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(b) PCA statistics:

Learn: identical to the multi-correlative filter;
Derive: everything the multi-correlative filter provides, plus the ni eigenvalues and

eigenvectors of the covariance matrix;
Assess: perform a change of basis to the principal components (eigenvectors), op-

tionally projecting to the first mi components, where mi ≤ ni is either some user-
specified value or is determined by the fraction of maximal eigenvalues whose sum
is above a user-specified threshold. This results in mi additional columns of data
for each request Ri.

(c) k-means statistics:

Learn: compute optimized set(s) of cluster centers from initial set(s) of cluster centers.
In the default case, the initial set comprises the first k observations. However, the
user can specify one or more sets of cluster centers (with possibly differing num-
bers of clusters in each set) via an optional input table, in which case an optimized
set of cluster centers is computed for each of the input sets.

Derive: calculate the global and local rankings amongst the sets of clusters computed
in the learn operation. The global ranking is the determined by the error amongst
all new cluster centers, while the local rankings are computed amongst clusters
sets with the same number of clusters. The total error is also reported;

Assess: mark wth closest cluster id and associated distance for each set of cluster cen-
ters.

4. Time-series statistics: In this case, requests contain a fixed number m of values per variable,
measured across n time-steps; conceptually, the input is thus represented for each variable
by a n×m block of data, where each 1×m row is often referred to as a time-slab. In other
words, there are as many data points for each variable as there are time steps times the slab
size. In addition, an extra parameter table containing the time lags of interest is passed, i.e.,
those time steps for which the statistics should be computed with respect to the initial time
step.

(a) Auto-correlative statistics:

Learn: calculate minimum, maximum, mean, and centered M2 aggregates for a vari-
able with respect to itself for a set of specified time lags (i.e., time steps between
data sets of equal cardinality assumed to represent the same variable distributed in
space);

Derive: calculate unbiased auto-covariance matrix estimator and its determinant, Pear-
son auto-correlation coefficient, linear regressions (both ways), and fast Fourier
transform of the auto-correlation function, again for a set of specified time lags;

Assess: mark with squared two-dimensional Mahalanobis distance.

A utilization example of the statistical engines of VTK in ParaView is shown in Figure 3. Specif-
ically, a PCA analysis is performed on a quadruple of variables of interest in a 2D flame simulation,
whereby the statistical model is calculated (learn and derive operations) on a randomly-sampled
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Figure 3. Several of the VTK parallel stastistics engines are inte-
grated into ParaView. Example using PCA on 4 data set attributes.

subset of 1
10 -th of the entire data set, after which all points in the data set are marked with their

respective relation deviations from this model.

1.3 Input and Output Ports

The statistics algorithms have by default 3 input ports (except in one case at the time of writing)
and 3 output ports as follows:

Input Port 0: This port is identified as vtkStatisticsAlgorithm::INPUT DATA and is used for
learn data.

Input Port 1: This port is identified as vtkStatisticsAlgorithm::LEARN PARAMETERS and is
used for learn parameters (e.g., initial cluster centers for k-means clustering, time lags for
auto-correlation).

Input Port 2: This port is identified as vtkStatisticsAlgorithm::INPUT MODEL and is used
for a priori models.

Input Port 3: At the time of writing, this port is only defined for the divergence statistics engine;
it contains a reference to a vtkTable containing a set of per-variable normalization values,
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i.e., values that are considered “ideal” for each variable (the default value for any variable,
in the absence of a corresponding ideal value, being considered to be 1 for 100%.)

Output Port 0: This port is identified as vtkStatisticsAlgorithm::OUTPUT DATA and mirrors
the input data, plus optional assessment columns.

Output Port 1: This port is identified as vtkStatisticsAlgorithm::OUTPUT MODEL and con-
taints any generated model.

Output Port 2: This port is identified as vtkStatisticsAlgorithm::OUTPUT TEST and is cur-
rently experimental and not used by all statistics algorithms1.

All input and output ports are of type vtkTable, with the exception of both input and output
ports 1 which are of type vtkMultiBlockDataSet. Note that in earlier implementations of these
filters it was also possible for ports 1 to be of type vtkTable, however this is no longer the case.

In the following sections, we explain the concept of divergence statistics and how we used
them to devise a new engine with the specific intent of providing quantitative performance analysis
of large-scale computational clusters, either real or simulated.

1In earlier implementations and reports it was called vtkStatisticsAlgorithm::ASSESSMENT, a key which has
been deprecated since.
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2 Divergence Statistics

In this section, we present a summary on the notion of divergence statistics, along with a de-
scription of how we use them to quantitatively assess how observed data samples differ from an
idealized model.

2.1 Statistical Divergences and Distances

The term statistical divergence is used to describe a series of statistical techniques to quantify the
discrepancy between two discrete distributions. Such divergence functions are positive definite,
but in general neither are symmetric nor satisfy the triangle inequality: as such, they do cannot be
called distances. This is the reason why the more general term divergence is used.

In particular, one interesting family of statistical divergences is that of f -divergences, which
are defined between distributions P and Q with respective probability densities p and q as:

(·||·) : (p,q) 7−→
∫

IR
q(x) f

(
p(x)
q(x)

)
dx

where f is a convex function such that f (1) = 0, cf. [Bas10] for more details. In the case of discrete
probability distributions, which is that which is of interest to us here, where p and q instead refer
to probability mass functions, the definition becomes:

(·||·) : (p,q) 7−→ ∑
xi∈S

q(i) f
(

p(xi)

q(xi)

)
where S denotes the union of the sample spaces (i.e., where probability is nonzero) of P and Q.
Note that in the case where those two sample spaces do not exactly overlap, some terms in the sum
become degenerate and the divergence must be calculated as a limit.

2.2 Method

For the sake of HPC performance analysis, our approach is to compare an observed (i.e., empirical)
distribution of values for some set of variables of interest (e.g., measurements of network traffic,
CPU utilization, etc.) with respect to an ideal distribution, materialized by a probability mass
function whose entire weight (1) is located at a user-defined, variable-specific “ideal” value. For
instance, in the case of CPU utilization, our method is to quantify the discrepancy between the
empirical distribution observed across a number of compute cores with respect to an ideal 100%
CPU load for all cores.

With this goal in mind, we have implemented the following 5 statistical divergences and dis-
tances, which provide often qualitatively similar results, but sometimes reveal different details as
our first analyses have shown. For this reason, we have not decided on a particular divergence
against the others.
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• The total variation distance δ(·, ·), obtained when f (u) = 1
2 |u−1|, and which is a distance in

the true sense of the term (being symmetric and satisfying the triangle inequality). Note that
in our case, where we focus on discrete distributions, it is the same distance as the 1-distance,
up to a factor of 2:

δ(P,Q) =
1
2
||P−Q||1.

We prefer to use the TVD for it has an upper bound of 1, which is convenient, but in statistical
literature the 2 are sometimes confounded.

• The Hellinger distance dH(·, ·), also symmetric and satisfying the triangle inequality, ob-
tained by taking the square root of the f -divergence associated with f (u)= (

√
u−1)2. Again

in the case of discrete distribution, there is a relationship with a known norm, in this case the
2-distance (or Euclidean distance): specifically,

dH(P,Q) =
1√
2
||
√

P−
√

Q||2.

In addition, dH also has an upper bound of 1.

• The Bhattacharyya coefficient b(·, ·) is the f -divergence obtained when f (u) =. We then
define the Bhattacharyya semi-distance dB = − logb. It is a semi-distance because it sat-
isfies all the axioms of a distance, except for the triangle inequality. In particular, unlike
divergences in general, it is symmetric. However it is not bounded and takes on an infinite
value when the respective supports of P and Q are disjoint.

• The Kullback-Leibler divergence ∆(·||·), obtained with f (u) = u log2 u. Albeit not a statisti-
cal distance, it is useful in particular due to its non-symmetricity that allows for the giving
two different meanings to the distributions P and Q: in our case, P will be viewed as the
model distribution, representing a desired outcome. In this context, ∆(P||Q) quantifies the
amount of information lost when Q is observed instead of the “ideal” P. Unlike the afore-
mentioned distances, the Kullback-Leibler divergence is not bounded above and when P
and Q do not have exactly the same support, it can takes its values in [0,+∞] by using the
symbolic notations 0 log0 = limx→0+ x logx = 0 and 1

log0 = limx→0+
1

logx =+∞.

• The χ2 divergence χ2(·||·), obtained with f (u) = (u−1)2 which too is not a distance. Using
the limits for degenerate cases at 0, χ2(·||·) takes its values in [0,+∞]. Also called Pearson
divergence, it plays an important role in statistical literature in particular as result of its
relationship with the homonymous χ2 hypothesis testing.

Note that, in the context of HPC performance analysis, performed either experimentally (i.e.,
measured values on a real, live system performing an actual computation) or by simulation (for
instance, using Sandia’s Structural Simulation Toolkit SST/Macro), typical analyses will have di-
vergence analyses repeated at regular time intervals, in order to obtain a time-series analysis which
can be further processed to obtain a space-time quantitative perfomance aggregate value. This last
step is not described here, as it is entirely independent of the per-step divergence analysis.
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3 The Divergence Statistics Engine

3.1 Implementation Details

The divergence statistics engine is implemented as vtkDivergenceStatistics, a subclass of the
VTK class vtkOrderStatistics which we had developed earlier [PT10], wherefrom the diver-
gence statistics inherits the Learn, Derive, and Assess operations. We used this approach in order
to leverage the fact that the order statistics engine, as part of its Learn and Derive operations, com-
putes an empirical probablility mass function (EPMF) of the input set of observables, an EPMF
which we then use in a Test operation specific to the divergence statistics engine, whose output is
a vtkTable containing the 5 divergences outlined in §2.2.

Please note however that, although a subclass of a class which is part of the VTK library,
vtkDivergenceStatistics is not released open-source and in particular is not part of the VTK
package, as permitted by the BSD-like license of VTK which unlike other software license models
does not force developers to release extensions to the original library.

3.2 Usage

It is fairly easy to use the serial statistics classes of VTK; it is therefore just as easy to use the new
divergence statistics engine. All that is required is a build of VTK installed on your system. In
addition, a separate build of the divergence statistics engine is necessary, as it is not part of VTK
proper; however, as a convenience we provide as part of the tarball containing the source code a
CMakeLists.txt file which allows you to do exactly that, using the CMake cross-platform build
utility.

For example, Listing 1 demonstrates how to calculate divergence statistics on each column of
an input set inData of type vtkTable* with an associated set of input parameters representing
the ideal (or “peak”) values for each variable of interest, and no subsequent data assessment. It is
required that this input data have numeric type (i.e., double), although the order statistics engine
allows for non-numeric types as well. This additional requirement which is not needed for the
computation of the EPMF with the order statistics engine nonetheless allows for a simpler imple-
mentation of the divergence engine without, in our knowledge, resulting in a loss of generality
for the sake of performance analysis: all application cases which came to our attention measure
numeric quantities as part of the analysis process.

For univariate statistics algorithms, as is the case for the order and divergence statistics engines,
calling AddColumn() for each column of interest is sufficient – each request Ri can by definition
only reference a single column and so the filter automatically turns each column of interest into a
separate request.
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void Foo( void* arg1, void* arg2 )
{
// Assume the input dataset is passed to us
vtkTable* inputData = static_cast<vtkTable*>( arg1 );

// Assume ideal values are passed to us as well
vtkTable* idealVals = static_cast<vtkTable*>( arg2 );

// Create divergence statistics class
vtkDivergenceStatistics* ds = vtkDivergenceStatistics::New();

// Set input data and additional parameter ports
ds->SetInputData( vtkStatisticsAlgorithm::INPUT_DATA, inputData );
ds->SetSpecifiedPeakValues( idealVals );

// Select all columns in inputData
for ( int c = 0; c < inputData->GetNumberOfColumns(); ++ c )
{
ds->AddColumn( inputData->GetColumnName[c] );
}

// Calculate statistics with all operations except Assess
ds->SetLearnOption( true );
ds->SetDeriveOption( true );
ds->SetAssessOption( false );
ds->SetTestOption( true );
ds->Update();

Listing 1: A subroutine for calculating divergence statistics.

3.3 Application Example

We illustrate the use of the divergence statistics engine by incorportating into a the simulation
of a computational cluster comprising 64 switches with one compute node per switch, using a 3-
dimension torus (4x4x4) network topology, simulated using Sandia’s Structural Simulation Toolkit
(SST/Macro) using only one core of a Linux machine. It is outside of the scope of this report to
discuss the SST/Macro application, cf. [WK15] for more detailed information in this regard.

The experimental set-up uses of a C++ skeleton of a parallel application with a quadratic inter-
process communication pattern, sending data packets with 4096B fixed size, from all to all 64
compute nodes, and then emulating a fixed compute time of 10µs per process upon receive. The
SST/Macro visualization engine allows for for qualitative analysis, but more thorough analysis
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Figure 4. Qualitative analysis of CPU loads obtained with
SST/Macro simulation: the x-axis represents time expressed in ns,
and compute core loads for each of the 64 cores participating in the
simulated run are represented along the y-axis, at scale but with an
offset equal to the rank ID.

requires accurate quantification of resource utilization, allowing for comparison between different
programming models, run parameters, etc.

For instance, if compute load is the variable of interest, which is often the case in first order
analysis, one can simply plot the variation of the quantities of interest as shown in Figure 4: one
readily observes that the quadratic communication pattern results in sub-optimal resource alloca-
tion. However, as the number of components (in this case, the number of compute cores) grows it
becomes increasingly difficult to make sense of this raw data. Furthermore, this qualitative assess-
ment cannot be used to make objective comparisons between various input parameters (which can
represent both hardware and software design choices).

Meanwhile, using the divergence statistics engine embedded in a time-series analysis as out-
lined in §2.2, one readily obtains a quantitative measurement of the discrepancy between the sim-
ulation results and the ideal value, which is here chosen to correspond to a full utilization of
every compute core at every time step, as shown in Figure 5 for the Hellinger divergence be-
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Figure 5. Quantitative analysis of CPU loads obtained with
Hellinger divergence analysis of SST/Macro simulation: Figure 4
overlaid with Hellinger divergence, scaled by a factor of 64 of
compute loads as they diverge from user-defined 100% peak value.

tween simulated compute core loads (equal to either 0 or 1) and the peak value of 1. Note that
whether this particular choice of a desired, “ideal” peak value is good or even realistic is not
part of the discussion here; moreover, our implementation allows the user to compare, ad libi-
tum, various optimization strategies thanks to the SetSpecifiedPeakValues() function of the
vtkDivergenceStatistics class. In any event in the case displayed here, using a divergence im-
mediately allows for a global aggregation of all variable values into a single, time-varying quantity
which can be further acted upon (e.g. for visualization, optimization, or resource re-allocation).

For instance, as shown in Figure 6 (which for the sake of legibility only displays 4 amongst
the 5 available statistics), all divergences reveal qualitatively similar results, but also immediately
reveal aggregate information that was not observable from the collection of raw plots in Figure 4: in
particular, one can directly evince that after roughly 1s of simulated time, i.e., just before the middle
of the run, an absolute low-point (i.e., a high divergence value) is reached. Of course, the Kullback-
Leibler and Bhattacharyya divergences, being unbounded above, reveal this in a more obvious way
that the Total Variation or the Hellinger distances whose range is [0,1]. Meanwhile, the latter might
make the distances (as opposed to the non-distance divergences) more apt for an optimization
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Figure 6. Quantitative analysis of CPU loads obtained with di-
vergence statistics analysis of SST/Macro simulation: divergence
values (y-axis) vs. time expressed in ns (x-axis), for 4 out of the 5
available divergences provided by vtkDivergenceStatistics.

loop as their values will not cause out-of-range numerical errors; for this reason, we decided to
not decide as to whether true distances are more or less suited towards our performance analysis
goals than unbounded divergences, but rather to provide a panel of choices of possible qualitative
assessments. Also, it is worth acknowledging here that our choice of a base-2 implementation for
the Kullback-Leibler divergence (which is not always defined as such, depending on the authors,
with a natural logarithm also often used instead of log2) allows for a direct, intuitive understanding
of the divergence value: for instance, the computed maximum of 6 corresponds to the fact that only
1
26 of the entire collection of measured variables is at the desired peak value, i.e., a single compute
core is computing at that point amongst all 64, a very poor resource allocation from this standpoint
indeed.
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